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(a) Contradictory conditions {Task1 (Object 1) + Task2 (Object 2)}→ Composite Task

(b) Complementary conditions {Task1 (Object 1) + Task2 (Object 1)}→ Composite Task

Fig. 1: Applications of MaxFusion: (a) Contradictory condition composition: We show cases
where the generated images can easily bring in effects from multiple conditions that other-
wise need extremely descriptive conditioning. (b) Complementary condition composition: Multi-
modal generation combining details from different modalities but from the same image.

Abstract. Large diffusion-based Text-to-Image (T2I) models have shown im-
pressive generative powers for text-to-image generation as well as spatially con-
ditioned image generation. For most applications, we can train the model end-to-
end with paired data to obtain photorealistic generation quality. However, to add
an additional task, one often needs to retrain the model from scratch using paired
data across all modalities to retain good generation performance. In this paper, we
tackle this issue and propose a novel strategy to scale a generative model across
new tasks with minimal compute. During our experiments, we discovered that the
variance maps of intermediate feature maps of diffusion models capture the in-
tensity of conditioning. Utilizing this prior information, we propose MaxFusion,
an efficient strategy to scale up text-to-image generation models to accommodate
new modality conditions. Specifically, we combine aligned features of multiple
models, hence bringing a compositional effect. Our fusion strategy can be inte-
grated into off-the-shelf models to enhance their generative prowess. We show
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the effectiveness of our method by utilizing off-the-shelf models for multi-modal
generation. We will make the code public after the review process.

Keywords: Multimodal conditioning · Plug and Play · Diffusion Models

1 Introduction

Denoising Diffusion Probabilistic Models (DDPMs) [9] have revolutionized the
content creation industry by delivering photo-realistic quality in image [2, 8, 34, 36],
video [7,10], and 3D generation tasks [22,31]. These models excel in translating textual
descriptions or class labels into precise visual representations, thanks to training that
conditions them on text or labels [28,29]. The remarkable capabilities of recent text-to-
image (T2I) diffusion models [2, 34] have expanded further with the integration of ad-
ditional control signals, such as instructions [3] or style-based conditioning [23,35,50].
This allows for the creation of images that more closely align with user preferences
by enabling more nuanced control through multi-tasking capabilities, enabling multiple
conditions to be given to the model simultaneously.

However, training a generative model to accommodate multiple conditions presents
significant challenges, primarily due to the need for paired multi-modal data [20, 47].
Moreover, achieving satisfactory performance from multi-modal training often neces-
sitates prolonged training periods. Transfer learning has emerged as a popular solu-
tion for multi-modal generation of T2I Diffusion models [42, 44], allowing large text-
to-image models trained on extensive datasets like LAION-2B [37] to undergo fine-
tuning for downstream tasks, including image semantics [47, 48] and instruction-based
synthesis [3], in a comparatively shorter time using smaller datasets (around 10M im-
ages) [32]. Consequently, with sufficient multi-modal paired data and robust computing
resources, fine-tuning a pre-trained text-to-image model to incorporate a broad range of
conditions becomes feasible [17, 35]. However, this approach hinges on a fixed set of
initial conditions and a strategic selection of training data. A notable drawback is that
fine-tuning with smaller datasets can lead to catastrophic forgetting [15, 47], where the
model loses previously acquired knowledge from the original T2I task.

Recent works such as ControlNet [49] and T2I Adapter [26] tackled this problem by
introducing task-specific trainable parameters to include additional spatial conditioning
for diffusion models. Both these approaches showed impressive image synthesis quality
with good coherence to the structural conditioning. However, adapting ControlNet and
T2I Adapters to multiple tasks requires either training from scratch or manual param-
eter tuning across the intermediate outputs of multiple adapters, which accounts for a
non-trivial increase in compute time and memory. Hence, synthesizing images/videos
satisfying multiple conditions remains a challenge [4]. Progressing towards a solution
for multi-conditioning, a recent work, Unicontrol [32], trained a generative model with
paired data across diverse conditional modalities [11]. Through the multitasking-based
training paradigm, Unicontrol achieved better performance for individual spatial con-
ditioning tasks than Controlnet. Unicontrol has been trained with large-scale curated
data [37] across various modalities to achieve good visual synthesis quality. However,
the challenge associated with such an approach is that in order to add a new condition-
ing task, the models must undergo retraining, incorporating data not only from the new
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Fig. 2: Figure illustrating variance maps of intermediate features of encoder and decoder for the
text prompt "An astronaut riding a horse" for the 5th timestep of diffusion.

task but also from all preceding tasks [27, 32]. We refer to this as the "scaling issue"
signifying a rise in training complexity when integrating an extra task into a pre-trained
model. A training-free solution for multi-conditioning that exists in the literature is
compositional generation [5, 6, 21]. However, compositional algorithms impose a lin-
ear overhead on inference memory. To this end, we try to address the question. “Can
we enable a single diffusion model to scale efficiently across multiple diverse tasks
without retraining?".

In this paper, we propose a training-free solution for multi-modal generation. We
achieve this by utilizing a novel feature fusion scheme that leverages distinct single
task models for compositional generation. Our feature fusion criteria is motivated by
an observation regarding intensity of conditioning feature and the variance maps of
intermediate layers of a text-to-image diffusion model. An example is shown in Fig-
ure 2. We establish a criteria derived from feature variance maps across different layers
of a diffusion model. We propose MaxFusion - a simple and efficient feature fusion
algorithm that allows scaling up T2I models to multiple tasks simultaneously, hence
enabling zero-shot multi-modal generation powers to T2I models. Figure 1 presents
different applications of our method. In Figure 1(a), the top row illustrates the case
of zero-shot multi-modal generation where two models trained for individual tasks are
combined only during inference time to obtain multi-modal generation. These cases
illustrate cases where we can combine different modalities of different objects to cre-
ate a compositional scene. For example, in the first case, we add a pose of a person
to a sketch of an object and create a scenario where it can interact. Other examples
also show similar multi-modal generations with contradictory condition composition
of pose, sketch, depth-maps and semantic maps. Our method can also be utilized for
multi-modal conditioning of the same object to add complementary information and
this can be seen in Figure 1(b). For example, we can see that Depth,Edges conditions
the same image with complementary information. Our proposed merging mechanism
is versatile and can be applied atop any off-the-shelf diffusion models like Control-
Net and T2I-Adapter, enabling compositional conditioning tasks and extending their
generative capabilities. We perform extensive experiments to show the effectiveness of
the proposed method. We present results on: (i) Multi-modal generation using multiple
conditions describing different levels of semantics on the same spatial locations in an
image. (ii) Zero-shot generation where we utilize individual models trained for different
tasks and show the combined task without any retraining.

In summary, the following are the main contributions of this work:

– We tackle the need for training with paired data for multi-task conditioning using
diffusion models.

– We propose a novel variance-based feature merging strategy for diffusion models.
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– Our method allows us to use combined information to influence the output, unlike
individual models that are limited to a single condition.

– Unlike previous solutions, our approach is easily scalable and can be added on top
of off-the-shelf models.

2 Related Works

2.1 Scaling Diffusion Models to Additional Conditions

Denoising Diffusion Probabilistic Models (DDPMs) [9] have achieved remarkable
results in a variety of tasks, including text-conditioned image generation [28, 34, 36],
video generation [8, 10], and multi-modal generation [34, 35]. Methods like Control-
Net [49] and T2I Adapter [26] have been developed to extend the capabilities of these
large, pre-trained diffusion models, enabling them to accommodate additional input
conditions. These conditions influence the spatial semantics of the generated images by
using paired image, text, conditioning triplets, synthetically created for this purpose.
Various semantic details, including edge maps, poses, depth, and segmentation maps,
serve as conditioning inputs for the model.

To add a new task, a task-specific encoder, carrying the original encoder’s weights,
is seamlessly integrated into the network. This encoder then connects to convolutional
layers initialized at zero, aiming to maintain consistent intermediate latent outputs early
in the training, thus ensuring a stable foundation for effective learning. Only the pa-
rameters of this additional encoder undergo training to introduce the new condition,
avoiding the retraining of pre-existing model weights. This approach is crucial as re-
training pre-trained weights could lead to catastrophic forgetting [15], a significant risk
that ControlNet and T2I-Adapter skillfully navigate to preserve the original model’s
visual synthesis quality without any performance degradation.

2.2 Model Merging

Recent advancements in Large Language Model (LLM) research have introduced
the innovative concept of model merging [6, 24, 40, 45, 46], a process where weights
from multiple pre-trained models for the same task are combined. This technique aims
to create a superior model that outperforms the individual contributors. RegMean [13]
pioneered a method for merging models trained on diverse datasets for identical tasks,
enhancing overall performance. This method relies on a validation set to derive a closed-
form solution to a least squares regression problem, maintaining the merged model’s
weights in close alignment with that of the original models. Fisher merging [24] as-
signs varying degrees of importance to different model weights by utilizing the Fisher
Information Matrix. Task Arithmetic [12] views the discrepancy between pre-trained
and fine-tuned weights as task vectors, averaging these weights across tasks to forge a
combined model.

While these techniques show promise for token-based input and output scenarios
in language models, they encounter limitations when input modalities shift. Direct ap-
plication of these methods becomes problematic with changes in input modalities, ex-
plaining their rare utilization in multi-task conditioning for vision tasks. Specifically, in
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structural conditioning tasks where features vary significantly across modalities, sim-
plistic averaging mechanisms like task merging prove inadequate, often resulting in the
generation of multiple undesired artifacts in multi-task conditioned images. Recent ef-
forts, such as GitRebasin [1], have explored fusing models trained on distinct tasks by
aligning their weights. However, subsequent analyses, including work by Repair [14],
have highlighted the emergence of a ’feature forgetting’ issue, where signals from cer-
tain tasks weaken in the model’s deeper layers. This challenge renders such strategies
ineffective for integrating diffusion model weights across modalities for multi-modal
generation, as it risks neglecting some conditions.

Therefore, there exists a pressing need for a merging strategy capable of facilitat-
ing out-of-domain fusion for diffusion models. A potential solution is the framework
proposed by Zipit [38], which maintains two parallel sets of model weights and merges
them based on input features. Inspired by this approach, our work seeks to implement
a similar strategy for effective model integration.

3 Proposed Method

3.1 Unlocking Incremental Task Addition

ControlNet [49] performs structural conditioning by using dedicated layers de-
signed to handle different types of inputs, enabling it to process diverse input condi-
tions. Once the inputs are processed by these layers, they are fused with the features
from the first layer of the diffusion-UNet model. Therefore, we can intuitively conclude
that, during the training process of ControlNet, the weights of the first layer of different
control module input layers, like controllers designed for poses and depth, align the
modality to the latent space of a natural image. Hence, the signal input to the blocks
is converted to a similar domain as that of the input of the diffusion UNet. Moreover,
different modality ControlNets, like depth, sketch, and segmentation mask, handle dis-
tinct input modalities. Therefore, it is a must that these input processing blocks remain
separate. We walk the readers through the strategy of how different modalities can be
combined in the rest of the section. Before proposing a technique that can combine fea-
tures of two different models, we first address two crucial questions: (a) When utilizing
two different input modalities and the same backbone architecture, how do we align
the feature locations across the models processing these inputs for fusion? (b) Given
the presence of two different aligned features, which is the most relevant feature vector
required to enforce the condition at that particular feature location?

3.2 Which Features are Aligned in Conditioned Diffusion Models?

To address the problem of feature fusion-based schemes for multi-modal genera-
tion, a naive solution would be simply averaging the features of every layer of diffusion.
However, when the features are not aligned, such a fusion scheme leads to ineffective
conditioning. We point out such an example in Section 3. To overcome this, we leverage
the model structure of controlled diffusion models. As seen in Figure 4, intermediate
layer outputs get added to specific layers of the T2I model. Hence, we make a proposi-
tion:
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Fig. 3: Variance Maps across channels for intermediate features of ControlNet for different
modalities. As we can see the variance map has high values where the condition is present and
has low values for locations where the condition is absent.

Observation 1 Features from different modules that get added to the same spatial lo-
cation in Stable Diffusion are aligned.

3.3 Expressiveness of Control Modules

The task of choosing the most suitable feature from two at the same spatial location
for fusion poses a significant challenge. To effectively merge intermediate features from
multiple models, it becomes essential to employ a metric that quantifies the strength or
expressiveness of the condition at that specific location. For instance, as illustrated in
Figure 1, where multiple conditions are showcased, the network encounters the chal-
lenge of prioritizing the most expressive condition at each spatial point. Consider a
scenario with a sketch map and a segmentation map, as shown in Figure 1(b); the net-
work needs to identify and prioritize the condition that provides the most significant
information for that specific location. Our investigations led us to a straightforward yet
effective observation.

Observation 2 The expressiveness of a condition provided to the diffusion model can
be quantified using the variance maps from the model’s intermediate layers.

To demonstrate this, we examine variance maps of different control signals origi-
nating from an identical image, noise, and text prompt, as depicted in Figure 3. These
maps reveal higher activation in areas pertinent to the specific condition, suggesting that
variance maps can serve as a measure of conditioning strength needed for each spatial
area. Therefore, when comparing two models that process the same input noise but un-
der different conditions, the significance of each condition at every spatial point can be
approximated by the activation level of the variance map at that location. This approach
provides a reliable means to gauge the relative importance of each condition, enabling
more informed feature selection for fusion.
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Fig. 4: An illustration of MaxFusion. During the progression through Stable Diffusion, intermedi-
ate features are consolidated at each location, and the resulting merged features are subsequently
transmitted to the diffusion module. Please note the colors during the merging and unmerging
operation. Similar features are not unmerged and are passed as such to the next network layer.
Non-similar intermediate outputs are passed without any change.

3.4 MaxFusion

This section delves into the fusion mechanism among the intermediate outputs from
various task models passed to the T2I model and the subsequent layer. The InterModel
fusion occurs through a merging process, detailed in the following paragraphs.

Let’s begin with a straightforward scenario: fusing two independent modalities. Let
the ControlNet blocks handle different modalities M1,M2. A basic approach for com-
bining these modalities is naive averaging, represented as:

favg =
f1 + f2

2
(1)

where f1 and f2 are intermediate feature outputs across the models. However, such
a simplistic fusion method poses a challenge. Consider an image where the left half
contains only depth details while the right half features an edge. A naive averaging
scheme would dilute the significance of each feature by averaging them equally. An
ideal scheme would adjust spatially, giving more weight to the modality input value
at a given location (j, k). In cases of overlapping conditions, such as when conditions
denote the same object and spatial location, as illustrated in the robot example in Fig-
ure 1, it is desirable to incorporate characteristics from both modalities during merging.
To achieve this, we assess the correlation of features at each spatial location. For highly
correlated features, we adopt a weighted summation approach, formulated as:

f
(j,k)
eff =

f
(j,k)
1 + f

(j,k)
2

2
, if ρ(j,k) > δ (2)

where δ is a predefined threshold and ρ(j,k) represents the correlation value between
f
(j,k)
1 and f

(j,k)
2 at each spatial location and is defined as:

ρ(j,k) =
f
(j,k)
1 · f (j,k)

2

|f (j,k)
1 | · |f (j,k)

2 |
(3)
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If the correlation falls below the threshold, we prioritize the modality with the most
spatial information for Stable Diffusion. This prioritization is determined by the feature
variance at the location. To ensure fairness across modalities with differing absolute
variance values, we propose a relative standard deviation measure by normalizing stan-
dard deviation values across spatial locations:

σ̂
(j,k)
i =

σ
(j,k)
i∑

(j,k)σ
(j,k)
i

(4)

Hence, when the correlation is below the threshold, we define the aggregated feature
as the one with the highest channel standard deviation:

f
(j,k)
eff = f

(j,k)
i ,maxi(σ̂

(j,k)
i ), if ρ(j,k) < δ (5)

This formulation ensures automatic selection of the more relevant spatial condition,
even in conflicting cases, providing effective conditioning.

3.5 InterModel Unmerging

In this section, we discuss the inter-model fusion process that proceeds to the next
layer of the model. During the InterModel merging stage, we evaluate whether the cor-
relation value exceeds the predefined threshold. For each spatial point not meeting this
criterion, we verify if the feature being passed at that spatial location corresponds to the
same index it belonged to and has the maximum variance. If the element itself possesses
the maximum variance, we pass it as such; otherwise, we rescale the feature vector to
have the same standard deviation before merging.

f
(j,k)
i =

f
(j,k)
i i = maxi(σ̂

(j,k)
i )

σ
(j,k)
i

σ
(j,k)
max

f
(j,k)
max otherwise

(6)

where,
f (j,k)
max = f

(j,k)
i ; i = maxi(σ

(j,k)
i ) (7)

Please note that renormalizaiton of variance in Equation (6) reactivates regions that are
otherwise diminished during the estimation of feff . This effect of vanishing feature
strength is negated and rescaled to improve the performance. We detail the overall al-
gorithm in Algorithm 2, where SD denotes Stable Diffusion and l1, l2 are model layers
and we name the input modalities as c1, c2.

4 Experiments and Results

4.1 Implementation Details

All experiments are conducted on a single NVIDIA A5000 GPU utilizing off-the-
shelf models. We employ Stable Diffusion-v1.5 [34] as the T2I model. For task models,
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Algorithm 1 MaxFusion for scaling two modalities
Input: Model 1 layers l1, Model 2 layers l2 , threshold δ, input condition c1, input condition c2
1: for l = 1, . . . , L do
2: if l = 1 then
3: f1 = l1(c1)
4: f2 = l2(c2)
5: else
6: if ρ(f (j,k)

1 , f
(j,k)
2 ) ≥ δ then

7: f
(j,k)
eff =

f
(j,k)
1 +f

(j,k)
2

2

8: else
9: f

(j,k)
eff = f

(j,k)
i ,maxi(σ̂

(j,k)
i )

10: end if
11: SD decoder← feff
12: if ρ(f (j,k)

1 , f
(j,k)
2 ) ≥ δ then

13: fi(j,k) = f
(j,k)
eff ; i = 1, 2

14: else

15: f
(j,k)
i =

f
(j,k)
i i = maxi(σ̂

(j,k)
i )

σ
(j,k)
i

σ
(j,k)
max

f
(j,k)
max otherwise

16: end if
17: end if
18: end for return feff

we use ControlNet [49] and T2IAdapter [26] modules trained separately for differ-
ent tasks. Throughout our experiments, we maintain a consistent diffusion duration of
50 steps. Sampling is facilitated using the UniPC scheduler [51]. In our experiments,
we set the correlation threshold at a fixed value of 0.7. Due to the absence of public
datasets tailored for evaluating multi-modal generation with multiple modality inputs,
we curate a synthetic dataset leveraging the COCO dataset [19]. This dataset comprises
modalities including depth maps, segmentation masks, HED, and canny edge. Similar
to the approach in ControlNet [49], we utilize MiDAS [16] for depth map estimation,
PiDiNet [39], the canny edge detector, and UPERNET [43] for generating maps of indi-
vidual modalities. We curate a subset of 2000 images from the COCO validation set for
experimentation purposes. We utilize BLIP [18] to acquire corresponding captions and
perform evaluations under dual sets of conditions. For evaluations, we leverage variants
of existing networks as well as publicly available single-modality networks.

4.2 Qualitative Evaluations

We present results for multi-modal conditions in Figure 5 and 6. Here, we compare
with uni-modal networks SPADE [30] and PITI [41]. For multi-modal conditioning,
we implement ControlNet and T2IAdapter with different conditioning scales for the
various input tasks. On the left, we display the included modalities. As observed, the
single-modality segmentation model SPADE [30] fails to capture edges clearly, as it
is trained solely with segmentation maps. Similarly, PITI often struggles with image
quality in most cases, as its training data may not adequately represent complex scenar-
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TASK-1 TASK-2 Multi-T2I
Adapter

Multi-T2I
Adapter

Multi-
ControlNet

Multi-
ControlNet

OURS OURS

Fig. 5: Qualitative comparisons for contradictory conditions from different modalities. Fig-
ure illustrates the case of different conditions where out method shows a clear advantage over
existing approaches. The text prompts used are (1): "Walter White in a living room, GTA style."
(2) "A bicycle in a garden." (3) "A car in front of arc de triomphe"

Method Pose, Seg Pose, Depth

FID (↓) MSE-P (↓) MSE-S (↓) FID (↓) MSE-P (↓) MSE-D (↓)

T2I-Adapter 55.61 0.0140 0.1338 51.47 0.0134 0.0603
ControlNet 63.46 0.0142 0.1276 48.18 0.0137 0.0357

Ours 46.72 0.0135 0.1080 47.37 0.0119 0.0410

Table 1: Metrics for contradictory conditions on COCO
ios like "A banana on a chair". The multi-modal networks T2I-Adapter and ControlNet
generally perform well across most cases, yet they may falter in generating intricate
details in challenging scenarios. Please refer to Figure 6 for examples from the top two
rows. On a broader scale, multi-Controlnet performs quite well but struggles to pre-
serve key details when multiple conditions are present at the same location, as depicted
in the provided examples. Our proposed method successfully transfers details and per-
forms well in challenging cases while maintaining consistency with the text prompt.
Additional illustrative examples are available in the supplementary material.

4.3 Quantitative Evaluations:

Quantitative Analysis for Contradictory Conditions on COCO: Since existing datasets
don’t encompass contradictory inputs in COCO, and general strategies for deriving spa-
tial conditioning maps do not provide such datasets, we created a synthetic dataset for
evaluation purposes. We selected all COCO images containing humans and derived
their pose maps. Additionally, we included an extra pose map sourced from another set
of images obtained from the internet. Consequently, the pose maps now incorporate ad-
ditional spatial features, while other spatial features express the scene. The quantitative
analysis is presented in Table 1.
Quantitative Analysis for Complementary Conditions on COCO: For experiments
involving segmentation maps, we employ SPADE [30] as the single-modality model.
For experiments involving sketches, we utilize PITI [41] as the single-modality model.
As for the choice of multi-modal models, we establish the baseline using T2IAdapter [26]
with naive averaging, simultaneously feeding in multi-modality inputs. In experiments
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TASK-1 TASK-2 SPADE PITI Multi-T2I
Adapter

Multi-
ControlNet

OURS

Fig. 6: Qualitative comparisons for complimentary conditions in COCO dataset. For the
unimodal models we condition with its corresponding conditions. For multimodal models, we
condition using both the Tasks. The text prompts used for conditioning are: from top (1): "A
banana sitting on a chair and looking at the beach." (2) "A brocolli in a hand." (3) "A blackboard
and table in a classroom" (4) "A couple of sheep standing"

Method Modality FID(↓) NIQE(↓) Clip(↑) Depth(↓) Seg(↓)

SPADE [30] Uni 41.05 4.95 0.2813 0.0320 0.0923
PITI-Mask [41] Uni 35.52 6.20 0.2816 0.0269 0.0909

T2I-Adapter [26] Multimodal 43.24 5.34 0.2955 0.0554 0.1387
Ours Multimodal 38.84 5.34 0.2954 0.0296 0.1107

Method Modality FID(↓) NIQE(↓) Clip(↑) Depth(↓) HED(↓)

PITI-Sketch [21] Uni 38.50 6.22 0.2669 0.0298 0.0417

T2I-Adapter [26] Multimodal 30.63 3.90 0.2964 0.0417 0.1055
Ours Multimodal 29.71 2.86 0.2879 0.0191 0.0735

Table 2: Quantitative comparisons for {Seg,Depth → Image} and{Hed,Depth →
Image} respectively .

combining Depth-Segmentation, we employ NIQE [25] and CLIP consistency [33] as
evaluation metrics. Moreover, to ensure conditioning consistency, we derive the condi-
tions from the generated images and evaluate them using Mean Square Error against
their ground truth values. Observations reveal that Unimodal networks perform ad-
mirably in terms of conditioning consistency. However, they fall short in terms of text
consistency and the quality of generated images. On the other hand, multimodal net-
works exhibit superior performance and yield overall better metrics in terms of con-
sistency. Notably, our approach demonstrates better CLIP scores compared to other
evaluation methods, ensuring enhanced consistency across different text prompts.

5 Discussions

Why is it advantageous to use the proposed variance scheme rather than naively
adding the spatial conditions at the control input? During our experiments, we ob-
served that when both conditions are complementary, i.e., when we provide more than
one condition at the same spatial location, naive averaging of the features works well
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Method Modality FID(↓) NIQE(↓) Clip(↑) Seg(↓) HED(↓)

SPADE [30] Uni 41.05 4.95 0.2813 0.0923 0.0772
PITI-Mask [41] Uni 35.52 6.20 0.2816 0.0909 0.0844
PITI-Sketch [41] Uni 38.50 6.22 0.2669 0.1044 0.0417

T2I-Adapter [26] Multimodal 40.14 3.94 0.2922 0.1506 0.1201
Ours Multimodal 37.21 2.84 0.2941 0.0985 0.0774

Table 3: Qualitative comparisons for {Hed, Seg → Image}. Quantitative results for different
models for multimodal generation. Please note that the multimodal models have additional text
conditioning capability

for most cases. This is evident in Figure 6, where we can observe satisfactory perfor-
mance for the naive averaging scheme. However, when the conditions contradict each
other, as shown in Figure 5, the naive averaging scheme fails to incorporate details from
both modalities into the scene effectively. Our approach offers a clear advantage over
existing approaches in this scenario, opening up possibilities for zero-shot generation
by deriving details of different objects from different types of input.

Going beyond spatial conditioning: Recently trained version of Multi-T2I-Adapter
has shown the capability to include style conditioning as an additional modality. To
show that MaxFusion works utilizing style as a modality as well, we present the corre-
sponding results with different conditioning techniques in Figure 7. Additional results
are provided in the supplementary material.

Fig. 7: Qualitative results with style as a modality

Scalability beyond two modalities: In order to show that MaxFusion extends beyond
two modalities, we show that one can change Maxfusion to combine two modalities first
and add the next one on top of it and continue this process until all tasks are added. Let
us assume we have three tasks, namely Task1,Task2,Task3. One can first consider two
at a time and on the obtained intermediate feature, add the third task. The incremental
addition scheme is the same for the intra-modal fusion and the inter-modal fusion. For
extending to N tasks, one can follow the same procedure, performing an incremental
addition of each task to the previous. We show illustrative examples for the same in
Figure 8.
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Fig. 8: Qualitative results for extending to 3 modalities.

Method {Seg, Depth, HED}

FID(↓) MSE-S(↓) MSE-D(↓) MSE-H(↓)

T2I-Adapter 51.87 0.1354 0.0448 0.1046
ControlNet 50.47 0.1019 0.0362 0.0758

Ours 47.48 0.1000 0.0204 0.0692

Table 4: Scalability metrics, scaling to 3 modalities.

6 Ablation Studies

Effect of correlation Value for Multi-Modal Generation: We present the results of
varying the correlation threshold from 0 to 1 in Figure 9. When the correlation thresh-
old is 0, naive averaging of features occurs, leading to reduced conditioning strength of
depth and edges and resulting in inconsistent depth effects in the scene. Specifically, at
δ = 0, the image lacks 3D depth-based effects in regions where the teddy bear is situ-
ated. Conversely, when the correlation threshold δ = 1, more realistic images are gen-
erated. Varying the correlation threshold impacts sample quality, with a threshold above
δ > 0.5 yielding realistic images. To mitigate very high-frequency out-of-distribution
components in the image, we set the value of δ to 0.7. We observed that δ = 0.75 works
well for most cases.

Edge Map Depth Map δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

Fig. 9: Ablation study corresponding to different correlation thresholds. Please note the level of
3D effect included to the scene as the threshold increases. The prompt used for captioning is
Background:"A mountain". Foreground : "A teddy bear".

Effect of Multi-modal Conditioning: We present the results on single conditioning
and multi-conditioning in Figure 10. When conditioned with edges alone, the image
appears planar and visually unpleasing. Similarly, when conditioned only on depth, an
additional wing is generated at a specific location. In cases like this, more aesthetically
pleasing, high-quality images with fine-grained details from 2D edge conditions and 3D
depth effects can be generated using multi-modal generation.
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Edge Map Depth Map Edge Only Depth only Multimodal

Fig. 10: Ablation study drawing contrast between unimodal-models and multimodal models. The
prompt used for captioning is "A bird".

7 Limitations, Future Works, and Potential Impacts

Our model inherently inherits the limitations of Stable Diffusion in generating hu-
man hands and faces. Additionally, we observed discrepancies in results when utilizing
semantic maps, sometimes differing from the conditioned semantic map. However, this
limitation stems from the training approach of ControlNet and T2I-Adapter. As state-
of-the-art semantic segmentation networks cannot provide accurate masks for all open-
world images, this limitation is inherent in segmentation-conditioned models as well.
We provide examples in the paper and supplementary material to elucidate this issue.
Furthermore, while our work is capable of generating various spatial inputs, it holds po-
tential societal impacts. Also, one other limitation of our method is that as the number
of conditions increases, a trade-off between the conditioning and the sampling fidelity
arises. We will attempt to tackle this issue in future works by developing a much more
robust algorithm. Like other generative models, our model also has potential societal
impacts. The use of such models is at the user’s discretion and care must be taken while
using the model.

8 Conclusion

In this paper, we discover that the expressiveness of conditioning features is present
in the variance maps of intermediate layers of diffusion models. Utilizing this as prior
information, we introduced a novel training-free strategy to scale up conditional diffu-
sion models for multimodal generation using off-the-shelf models trained on individual
tasks separately. For multimodal fusion, we proposed a new fusion paradigm based on
variance across channels for different feature layers. The proposed fusion approach is
lightweight and can be seamlessly integrated on top of existing models. This new fu-
sion scheme empowers the model to perform zero-shot generation, which is otherwise
not achievable with a single model. We further showed that the proposed method works
beyond spatial conditioning and works with style conditioning as well. Moreover, Max-
fusion can be seamlessly integrated to more than two conditioning modalities. We con-
ducted experiments with four different spatial conditioning modalities to demonstrate
the effectiveness of our method.
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Supplementary material: MaxFusion: Plug&Play
Multi-Modal Generation in

Text-to-Image Diffusion Models

No Author Given

No Institute Given

1 Maxfusion without variance renormalization

We present a variant of Maxfusion without the variance renormalization procedure
mentioned in Section 4.1 in the main paper here. The corresponding results are shown
in Figure 6

Algorithm 2 MaxFusion for scaling to two modalities
Input: Model 1 layers l1, Model 2 layers l2 , threshold δ,
1: input condition c1, input condition c2, SD input={}
2: for l = 1, . . . , L do
3: if l = 1 then
4: f1 = l1(c1)
5: f2 = l2(c2)
6: else
7: if ρ(f (j,k)

1 , f
(j,k)
2 ) ≥ δ then

8: f
(j,k)
eff = f1l

(j,k)+f2l
(j,k)

2

9: else
10: f

(j,k)
eff = fil

(j,k),maxi(σ
(j,k)
i )

11: end if
12: SD decoder← feff

13: if ρ(f (j,k)
1 , f

(j,k)
2 ) ≥ δ then

14: fi(j,k) = f
(j,k)
eff ; i = 1, 2

15: else
16: f

(j,k)
i = f

(j,k)
i ; i = 1, 2

17: end if
18: end if
19: end for
20: return feff

2 Extending beyond two tasks

In order to extend MaxFusion beyond two tasks, one can change MaxFusion to
combine two modalities first and add then add the next one on top of it and continue
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this process until all tasks are added. For example, let us assume we have three tasks
namely {Task1,Task2,Task3} , one can first consider two at a time and on the obtained
intermediate feature, add the third task. The incremental addition scheme is the same for
the intramodel fusion and the intermodal fusion For extending to N tasks, one can follow
the same procedure, performing an incremental addition of each task to the previous.
we show illustrative examples of the same in Figures 1,2, 4, 3, 5

Fig. 1: Non cherry picked examples for multimodal generation with 3 modalities.
{Depth,HED,Canny} Text Prompt is "Background: A living room, Foreground: a dog near
a teddy bear"



20 No Author Given

Fig. 2: Non cherry picked examples for multimodal generation with 3 modalities.
{Depth,HED,Pose} Text Prompt is "Background: A park, Foreground: a dog near a per-
son"
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Fig. 3: Non cherry picked examples for multimodal generation with 3 modalities.
{HED,Depth, Pose} Text Prompt is "Background: A mountain, Foreground: a teddy bear
near a person"
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Fig. 4: Non cherry picked examples for multimodal generation with 3 modalities.
{SEG,HED,Pose} Text Prompt is "Background: A park, Foreground: a dog near a person"
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Fig. 5: Non cherry picked examples for multimodal generation with 3 modalities.
{HED,Depth, Pose} Text Prompt is "Background: A park, Foreground: a teddy bear near
a person"
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Seg Map HED Map Variant Algorithm Original

Depth Map Pose Map Variant Algorithm Original

HED Map Depth Map Variant Algorithm Original

Seg Map HED Map Variant Algorithm Original

Fig. 6: Ablation study corresponding to Variant algorithm vs the Original algorithm for different
modalities
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